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Crosspoint Complexity of 
Sparse Crossbar Concentrators 

A. Yavuz Om$, Senior Member, IEEE, and H. M. Huang 

Abstract- A sparse crossbar (n, m, e)-concentrator is a bi- 
partite graph with n inputs and m outputs in which any c 
or fewer inputs can be matched with an equal number of 
outputs, where c is called its capacity. We present a number of 
new results on the crosspoint complexity of such concentrators. 
First, we describe a sparse crossbar (n, m, m)-concentrator whose 
crosspoint complexity matches Nakamura-Masson’s lower bound 
for any given n and m. Second, we present a sparse crossbar 
( 2 m ,  m, m)-concentrator with crosspoint complexity also match- 
ing Nakamura-Masson’s lower bound, and with fixed fan-in and 
nearly fixed fan-out. Third, we derive an easily computable lower 
bound on the crosspoint complexity of sparse crossbar (n, m. e)- 
concentrators. Finally, we show that this bound is attainable 
within a factor of two when n - m 5 c 5 [m/c].  

Index Terms-Bipartite graph, concentrator, sparse crossbar, 
crosspoint complexity. 

I. INTRODUCTION 
IVEN AN m x n binary matrix, suppose we wish to 
determine if, for every c columns of this matrix, there 

exist c rows such that the intersection of every column in the 
given set of c columns with a distinct row among those rows 
contains a “1” entry. This interesting problem about binary 
matrices can also be posed as a matching question in bipartite 
graphs [3], and is closely related to the behavior of a switching 
device, called a sparse crossbar concentrator as follows. The 
columns in an m x n binary matrix represent the inputs of such 
a device, the rows represent its outputs, and the “1” entries 
correspond to contacts or crosspoints between the inputs 
and outputs. The condition that the intersections of every c 
columns with some c rows contain “1” entries characterizes 
the concentrator’s ability to connect any c of its inputs to 
some c of its outputs. Any sparse crossbar whose columns 
meet this property will be called a sparse crossbar (n, m, e)- 
concentrator, where c is called its capacity. Sparse crossbar 
concentrators were introduced by Pinsker [12] who used them 
to show that full-capacity concentrators ( e  = m)-concentrators 
can be constructed with O ( n )  crosspoints. Full-capacity con- 
centrators play a central role in subscriber loops to multiplex 
low-rate channels onto higher speed transmission trunks or 
remote carriers [13]. They are also used in the construction of 
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more powerful connectors such as permutation networks and 
generalized connectors [4], [6], [8]. Bounded capacity sparse 
crossbars ( e  < m )  can also serve as concentrators when the 
maximum number of matched inputs is strictly less than the 
number of outputs, as may be the case in some switching 
applications. 

The problems we consider in this paper deal with proving 
that certain sparse crossbars exhibit a concentrator behavior 
and with computing the minimum number of crosspoints it 
takes to construct a sparse crossbar concentrator. It is desirable 
that the sparse crossbar concentrators we consider have as few 
crosspoints as possible. A secondary objective is to keep the 
fan-out of the inputs and fan-in of the outputs as small as 
possible and nearly constant over the entire set of inputs and 
outputs. 

A number of results have been reported on the crosspoint 
complexity of full capacity concentrators. Pinsker proved that 
there exists an (n, m, m)-concentrator (henceforth called an 
(n, m)-concentrator) with at most 29n crosspoints [12]. Bas- 
salygo subsequently reduced this bound to 20n crosspoints [ 2 ] .  
Explicit constructions of (n,  m, e)-concentrators with O ( n )  
crosspoints were given by Margulis [9] and others [l], [5] 
for any e,  1 5 c 5 m. While these constructions rely 
on O ( n )  crosspoints, they exact O(1ogn) delay. In another 
direction, Masson [ 101 and Nakamura and Masson [ 111 studied 
the crosspoint complexity of sparse crossbar concentrators. 
They derived lower bounds on the number of crosspoints in 
sparse crossbar concentrators and showed that, in certain cases, 
these bounds are tight. While their bound for full capacity 
concentrators is easy to compute, to determine their lower 
bound for bounded capacity concentrators, one must solve 
a polynomial whose degree depends on the capacity of the 
concentrator in question. 

These results are extended here as follows. First, we de- 
scribe an (n,  m)-concentrator construction, called a fat-and- 
slim crossbar, whose crosspoint complexity matches Naka- 
mura-Masson’s lower bound for any given n and m, thereby 
removing the restriction on the choices of number of inputs and 
outputs imposed by Masson’s binomial network. Second, we 
present a (am, m)-concentrator whose crosspoint complexity 
also matches the same lower bound but with nearly half 
the fan-out of the first construction. Third, we derive a 
new lower bound on the crosspoint complexity of sparse 
crossbar (n, m, e)-concentrators. This bound closely follows 
Nakamura-Masson’s lower bound, but unlike that bound, 
it is very easy to compute. Finally, we describe a sparse 
crossbar (n ,  m, e)-concentrator whose crosspoint complexity 
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resides within a factor of two of this new lower bound when 
n - m 5 c 5 Lm/c]. 

11. PROBLEM FORMULATION AND APPROACH 

Formally, an (n ,  m, e)-concentrator is a directed acyclic 
graph S = ( I , O , E )  with a set of n inputs (I) ,  a set of 
m 5 71 outputs ( O ) ,  and a set of edges ( E )  such that there 
exist edge-disjoint paths between any c or fewer inputs and 
an equal number of outputs. The edges in E are called the 
crosspoints of 4. 

A graph S = ( I , O , E )  is called a sparse crossbar if each 
edge in E lies directly between an input in I and an output in 
0. A sparse crossbar is called a binomial ( ( y ) ,  m)-network 
if every one of its (:) inputs is connected to a distinct subset 
of outputs among its m outputs. The number of outputs 
(inputs) to which an input (output) is connected is called its 
fan-out (fan-in), and the maximum number of outputs (inputs) 
to which an input (output) in 4 is connected is called the 
fun-out Cfan-in) of G. 

To prove that a sparse crossbar S = ( I , O , E )  is an 
(n,m,c)-concentrator, we will need to show that there ex- 
ists a matching between every c inputs in I and some c 
outputs in 0. That is, for every x 1 , z 2 ,  ...,z, E I ,  we 
must show that there exist y l ,yz ,  . . .  ,yc E 0 such that 
( X I ,  yl), (Q, y2), . . . , (zc, yc) constitute crosspoints in E.  In 
this connection, the following well-known theorem due to Hall 
will prove invaluable [7] .  

Theorem I (P.  Hull): Let 0 be a finite set and let 
Y1, Yz, . . . , Y, be arbitrary subsets of 0. There exist distinct 
elements yz E y Z ,  1 5 i 5 T if and only if the union of any k 
of Y1, Yz, . . . , Y, contains at least k elements. 

Hall’s theorem will be invoked in our proofs as follows: 
To begin with, the set 0 in the theorem will denote the set of 
outputs of a sparse crossbar, 4 = ( I ,  0, E ) ,  and Yl, Y2, . . . , Y, 
will represent the subsets of all outputs in 0 which are 
connected to some T inputs X ~ , X Z ,  . . . , xl. in I ,  in that order, 
i.e., Y1 contains all the outputs connected to input .r1, Yz 
contains all the outputs connected to input XZ, and so on. The 
outputs in Y, are called the neighbors of xz, and Y, is called 
the neighbor set of z,, 1 5 z 5 T. With this setup, we will 
attempt to establish that the union of Yl , Yz, . ‘ . , Y, contains 
at least r outputs for any choices of I C ~ , X Z ,  . . . , 5,  in I ,  and 
any T ,  1 5 T 5 e, where c is the projected capacity of 4. This 
fact will then be used together with Hall’s theorem to conclude 
that S is an (n,  m, e)-concentrator. 

As for computing lower bounds on the crosspoint com- 
plexity of sparse crosbar concentrators, our proofs will rely 
on some elementary observations concerning the minimum 
number of neighbors of every subset of outputs must have 
in such graphs. This minimum will then be coupled with the 
required capacity of the sparse crossbar in question to obtain 
a lower bound on its crosspoint complexity. 

111. FULL-CAPACITY CONCENTRATORS 

Nakamura and Masson [ l l ]  derived a lower bound on 
the crosspoint complexity of full-capacity sparse crossbar 
concentrators, and proved that this bound is tight for a binomial 

network. Here we describe a new full-capacity sparse crossbar 
concentrator whose crosspoint complexity matches the same 
lower bound for any number of inputs and any number 
of outputs. In contrast, the ratio of the number of outputs 
to the number of inputs of a binomial ((““_,),m)-network 
approaches 0 as m t ca. Another problem with the binomial 
( (my2), m)-network is that its fan-out (which is m - 2) is 
nearly as large as its number of its outputs, and its fan-in 
(which is (m  - 1)(m - 2)/2) is also nearly as large as its 
number of inputs. We describe a sparse crossbar (2m,m)- 
concentrator construction that is optimal with respect to its 
crosspoint complexity, and has fan-out which is almost half 
the number of its outputs and fan-in which is also almost half 
of its inputs. 

We first recall the following lower bound from [l 11. 
Theorem 2 (Nakamura-Musson): Any sparse crossbar (n,  

m)-concentrator requires at least m(n - m + 1) crosspoints. 
Dejnition 1: Let 4 = ( I ,  0, E )  be a sparse crossbar with 

n inputs and m outputs. Suppose that I is partitioned into two 
sets, I1 and 1 2 ,  where 1111 = n - m and l Iz l  = m. 4 is called 
an (n,m)-fat-and-slim crossbar if each of the n - m inputs 
in 11 is connected to all the m outputs, and if each of the m 
inputs in I ,  is connected to a single but distinct output. 

Theorem 3: For any positive integers m and n, m 5 n, ev- 
ery (n,  m)-fat-and-slim crossbar yields an (n,  m)-concentrator 
with a minimum number of crosspoints. 

Proof Let 6 = ( I ,  0, E) be an (n,m)-fat-and-slim 
crossbar, and X = {zl, x2, . . . , I C ~ }  be an arbitrary r-subset 
of I ,  where 1 5 T 5 m, and let Y,  be the neighbor set 
of input z,, 1 5 i 5 T.  By the construction of 4, it is 
obvious that if at least one of Z ~ , Z Z ,  . . .x, belongs to 11 then 
Y1 U Yz U . . . U Y, contains at least m outputs. On the other 
hand, if all of z 1 , 2 2 , .  . . ,z, belong to 1 2  then YIUYZU. e +UY, 
contains exactly T outputs. The concentrator property of 4 thus 
follows from Hall’s theorem. That the crosspoint complexity 
of 4 matches the lower bound in Theorem 2 is obvious from 
its construction. 0 

Fig. 1 shows a fat-and-slim crossbar’ for n = 13 and 
m = 4. In this particular fat-and-slim crossbar construction, 
the inputs in IZ are connnected to the four outputs in a diagonal 
fashion. This is one of 4! possible constructions that can be 
obtained by permuting the inputs in I 2  onto the 4 outputs in 4! 
ways. In general, there are (:)m! = n! / (n  - m)! fat-and-slim 
crossbars with n inputs and m outputs. 

Our second construction provides a minimum crosspoint 
complexity sparse crossbar concentrator with nearly fixed fan- 
out and fixed fan-in when n = 2m,. 

Theorem 4: Let 4 = ( I ,  0, E )  be a sparse crossbar with 
2 m  inputs and m outputs. Let 0 = { 1,2,3,  . . . , m}, and sup- 
pose that I is partitioned into two sets I1 = { 1,2,3,  . . . , m} 
and I2 = { m + l , m + 2 , . . . , 2 m } ,  where 1111 = 1121 = m. 
Suppose each input in I1 is connected to all the odd outputs, 
and also input 22 is connected to output 2z , l  5 z 5 [m/2]. 

The name fat-and-slim crossbar for this construction is coined not so much 
to capture its topology (i.e., its fat and slim sections), but rather to point 
out that while the fat-and-slim crossbar has the illusion of having too many 
crosspoints, in reality, its crosspoint complexity matches the lower bound in 
Theorem 2. 
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Fat-and-Slim Crossbar 

Sparse Crossbar (Theorem 4) 
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m(n-m+l) n-m+f m No 

m(n-m+l) n-m+l (rd2)+1 Yes 

TABLE I 
COMPARISON OF THREE SPARSE CROSSBAR FULL-CAPACITY CONCENTRATORS 

I I Yes I I n-m+l I m(n-m+’) 
I Binomial network 

‘ 1  I- ’*-- 12 - I ,  - - 

0 

I I I I I I I I I I I I I  Fig. 2. A (12,6)-concentrator with a minimum number of crosspoints 

Fig. 1. A (13,4)-fat-and-slim crossbar. 

outputs. Therefore, the inputs in X must have at least 

[m/21 + €1 + 1m/2] + €2 - (€1 + €2) = m 2 T 

Likewise, suppose each input in 1 2  is connected to all the 
even outputs, and also input 2i+ 1 + (m mod 2) is connected to 
output 2(z- Lm/2j)+1, Lm/2] 5 i 5 m-1 (see Fig. 2). 4 is a 
(2m, m)-concentrator with a minimum number of crosspoints, 
with fan-out = [m/Zl + 1 and fan-in = m + 1. 

Proofi The proof of this theorem is similar to the proof 
of the previous theorem, but requires a more careful inspection 
of the neighbors of the inputs of 4. Let X be an arbitrary T-  

subset of inputs, where 1 I T I m, and let XI = X n 1, = 
{ x ~ , x ~ , ~ ~ ~ , x p }  andX2 = x n 1 2  = { x i , x i , . . . , z b } ,  where 
T = p + q. It is obvious that if XI = 0 or X2 = 0 then 
the inputs in X must have at least T neighbors. Otherwise, 
let Y,  be the neighbor set of input x,, 1 5 i 5 p ,  and let Y,’ 
be the neighbor set of input z:, 1 5 i 5 q. It is easy to see 
that Y1 U Y2 U . . . U Yp contains at least [m/21 + tl outputs, 
where the first term in the sum accounts for the odd-numbered 
neighbors of the inputs in X n I l ,  and €1 2 0 accounts for 
the even-numbered neighbors of the same inputs. Likewise, 
Yi U Yi U . . .  U Yi contains at least Im/2] + €2 outputs, 
where the first term in the sum accounts for the even-numbered 
neighbors of the inputs in X n I z ,  and c2 2 0 accounts for the 
odd-numbered neighbors of the same inputs. Now, let 

Y = Y 1 U Y 2 U . . . U Y p  

Y’ = Y; U Y2’ u.. . U Yd. 
and 

Then the number of neighbors of the inputs in X is given by 

IYI + IY’I - IY n Y’I 

Furthermore, the indices of the outputs in Y and Y’ show 
that the intersection of the two sets contains no more than 

neighbors. Hence, by Hall’s theorem, 4 is an (n,m)- 
concentrator. Furthermore, the number of crosspoints in this 
construction is given by (m  + 1)m = (2m - m + l)m, and 
this matches the lower bound of Theorem 2 with n = 2m. 

U 
The key features of the two concentrator constructions 

described in this section along with the binomial network are 
summarized in Table I. All three constructions are optimal 
with respect to their crosspoint complexity. The advantage 
of the fat-and-slim crossbar over the other two crossbars is 
the fact that it does not place any restrictions on its number 
of inputs and outputs, whereas the advantage of the sparse 
crossbar described in Theorem 4 is its relatively small fan-out. 

The fan-in and fan-out expressions are obvious. 

IV. BOUNDED-CAPACITY CONCENTRATORS 

The lower bound stated in Theorem 2 applies only to 
full-capacity sparse crossbar concentrators. In this section, 
we consider the extension of this result to bounded-capacity 
concentrators. 

A. Nakamura-Masson’s Lower Bound 
We first recall the lower bound established in [ll]. 
Theorem 5 (Nakamura-Masson): Any sparse crossbar (n,  

m, e)-concentrator requires nx  crosspoints where x satisfies 

(1) 

For some values of n,m, and e, this bound is tight. In 

(3 
(3 ~ n ( c  - x) - c2 + c = 0. 

min(t1, m/2} + min(t2, m/2} = €1 + E:! particular, the following holds. 
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Corollary 1 (Nakamura-Masson): For all m, U 2 2,  the 
binomial ( (7)  , m) network is a sparse crossbar ( ( y )  , m, U + 
2) -concentrator with a minimum number of crosspoints. 

Remark 1: We note that the Nakamura-Masson’s lower 
bound is also tight for c = 1 and c = m. (e  = 1 gives 
n crosspoints and c = m gives m(n - m + 1) crosspoints 
both of which are clearly upper bounds as well, the latter by 
Theorem 3.) 0 

Except these three cases, it is not known if Naka- 
mura-Masson’s lower bound is also tight for other bounded 
capacity concentrators. Part of the difficulty stems from the 
implicit nature of the lower bound since one must solve 
for 5 in (1) before the lower bound can be determined. 
When simplified, the expression on the left-hand side gives a 
polynomial of degree m - c + 1 in 5 which is cumbersome 
to solve for an exact value of (I: especially if m >> e. Instead, 
Nakamura and Masson worked out a lower bound on z which 
is given by 

c(c - 1) 
2 2 e - (T) 7. 

Combining this lower bound on x with Theorem 5 shows 
that any (n,  m, e)-concentrator requires 

12% 2 n e  - (;) c(c - 1) (3) 

crosspoints. If m and c are fixed, this lower bound is asymp- 
totically equivalent to wc as n ---t CO. 

B. The New Lower Bound 

The asymptotic lower bound given in (3) is useful when 
n >> m, but, in most cases, one would be more interested in 
(n,  m)-concentrators, where m scales with n. In this case, this 
lower bound is negative for all c 2 (n/m) + 1, and ‘m >> e. 
This can be seen by noting that (T) 2 m, for m >). e, and 
hence 

ne  - 1) 5 c(n  - m(c - 

for all c 2 (n/m) + 1. 
Our next result gives a new lower bound on the crosspoint 

complexity of (n, m, e)-concentrators which is very easy to 
compute and closely follows Nakamura-Masson’s exact lower 
bound for all m = O ( n ) .  

Theorem 6: Any sparse crossbar (n,  m, c)-concentrator re- 
quires [m(n - c + l ) / m  - c + 11 crosspoints. 

Proof: Let D = (I, 0, E )  be a sparse crossbar (n,, m, e)-  
concentrator. Then each (m - c + 1)-subset of outputs in 0 
should be connected to at least n - c + 1 inputs in 1 ,  since, 
otherwise, there will exist some c inputs that are connected 
only to c - 1 outputs,’ contradicting the fact that 4 is an 
(n,  m, e)-concentrator. Let Pm--c+l(0) denote the collection 
of all (m - c + 1)-subsets of 0, d, denote the far-in of output 
i ,  1 5 i 5 m, and pI denote the number of (m- e+ 1)-subsets 
of 0 that contain output i. Since the number of neighbors 

’A subset of outputs Y is said to be connected to a subset of inputs X if 
there exists a crosspoint between every input in X and some output in Y. 

(inputs) of the outputs in an (m  - c + 1)-subset of 0 cannot 
be larger than the sum of the crosspoints connected to the 
outputs in that subset, we have 

or, equivalently, 

where the expressions on the left-hand side of both inequalities 
sum the in-degrees of the outputs in 0 over all of its (m  - 
c + l)-subsets. Now, let ~ ( n ,  m, e )  denote the number of 
crosspoints in G. Noting that p; = ( ~ ~ ~ )  and 

m 

i=l 

(5 )  gives 

or 

which reduces to 

when simplified. 0 
We note that, as with Nakamura-Masson’s exact lower 

bound, this new lower bound reduces to the lower bound given 
in Theorem 3 when c = m, and to n when c = 1. 

Fig. 3 shows how the two bounds are related together for 
various other values of e. It should be pointed out that the 
new lower bound gets closer to Nakamura-Masson’s lower 
bound as n/m ---t 1. We also note that computing the exact 
values of Nakamura-Masson lower bound is much more time- 
consuming than computing new lower bound as the former 
requires solving a polynomial of degree m - c + 1. 

C. An Almost Tight Construction 
At this point, it is reasonable to ask whether we can 

construct a bounded-capacity sparse crossbar (n,  m, e)- 
concentrator for any n, m, and c with a minimum crosspoint 
complexity. Unlike the full-capacity case, the resolution of 
this question is complicated by two related facts. First, the 
new lower bound we derived in the previous section is 
not as tight as Nakamura-Masson’s lower bound. Second, 
Nakamura-Masson’s lower bound is not explicit enough 
to suggest a bounded capacity sparse crossbar concentrator 
construction whose crosspoint complexity may somehow 
match it by a constant factor. 
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Fig. 3. 
bound. 

Comparison of Nakamura-Masson's lower bound with the new lower 

Given these facts, we present in this section a bounded- 
capacity sparse crossbar (n,  m, e)-concentrator whose cross- 
point complexity comes within a factor of two of the new 
lower bound, when n - m 5 c 5 Lm/c]. A similar con- 
struction for other values of n,m, and c remains an open 
problem. 

Theorem 7: Let 4 = ( I ,  0 ,  E )  be a sparse crossbar, where 
n - m 5 c 5 Lm/c].  Suppose that the inputs in I are 
partitioned into two sets I1 = {1,2, . . . , n - e } ,  and I2 = 
{n  - e+ 1, n - e+ 2, . . . , n},  and that the first Lm/c] c outputs 
in 0 are partitioned into Lm/c] sets 

0, = {(i - 1)c f  l , ( i  - l ) c + 2 , .  . . , i c } ,  15 i 5 Lm/c]. 

Let the inputs in 1 2  be connected to the outputs in 
0 1 , 0 2 , .  . . , OL,/,J in a diagonal fashion, i.e., let 

(n- c + j , ( i  - l ) c + j )  E E , 1 5  i 5 Lm/c], 15 j 5 c. 

Furthermore, let input i in I1 be connected to output i in 
0, l  5 i 5 n - c. Then 4 (see Fig. 4) is an (n,m,c)- 
concentrator with n - c + Lm/c]c crosspoints. 

Proof: We need to show that every subset of e inputs 
can be matched with some c outputs, n - m 5 c 5 Lm/c]. 
It is obvious from the construction that if these c inputs all 
belong to 11 or all belong to 12 then this can be done. So, 

c- - n-c 

I " I 

Fig. 4. 
thick lines indicate where the crosspoints are located.) 

The structure of the sparse crossbar construction in Theorem 7. (The 

consider an arbitrary but fixed set of a 5 c inputs X ,  and 
define X I  = X n Il # 0 and X Z  = X n I z  # 0. Let 
a1 = IX11,a~ = 1x21 and let Yl and Yz be the sets of 
neighbors of X I  and X Z  in 4. We have 

lYl uYzl = lYll + lYzl - lYl nYzl 

lY2l = a2lm/c], lyi nu21 5 min{ai,a2Lm/cj} 

and by the construction of 6,lYll = a1 

so that 

lY1 uY2l 2 a1 +azLm/c] - min{a1,azLm/c]}. 

ff2lm/.] 2 Lm/c] 2 c 2 al. 

lY, U Y2l 2 a1 + a2Lm/c] - Q 1  = a21m/c] 2 c 2 a. 

Now, since a2 2 1 and c 5 Lm/c], we have 

Hence 

Therefore, by Hall's theorem, D is an (n,  m, e)-concentrator 
for any c , n  - m 5 c 5 Lm/c]. Moreover, its construction 
reveals that it encompasses n - c + Lm/e] c crosspoints, where 
the first term accounts for the number of crosspoints connected 
to the inputs in I,, while the second term accounts for the 

0 
The crosspoint complexity of this sparse crossbar concen- 

trator is quite close to the lower bound derived in the previous 
section. To see this, we note that 

number of crosspoints connected to the inputs in I,. 

n - c t  Lm/c]c I n - c +  m I (n  - c)m/(m - c t  1) + m 

so that the crosspoint complexity of this sparse crossbar 
concentrator is within a factor of two of the lower bound 
derived in the previous section. We also note that a more 
direct construction of a sparse crossbar (n,  m, e)-concentrator 
obtained by connecting each input to some c outputs yields a 
crosspoint complexity of ne which gives O(nl ') crosspoints 
as compared to O ( n )  crosspoints of this construction for 
n - m  5 c 5 Lm/c]. 

We illustrate this bounded-capacity sparse crossbar con- 
struction in Fig. 5 for n = 1 2 , m  = 10, and c = 3.  The 
shaded boxes on the left show how an input in 1 2  can be 
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is linear in its number of inputs (and outputs) when the 
capacity does not exceed the square root of the number 
of outputs. These results extend Nakamura-Masson’s earlier 
work on sparse crossbar concentrators in a tangible way, while 
leaving out the construction of an (n,  m, e)-concentrator with 
a crosspoint complexity which is within a constant factor of 
either of the lower bounds stated in Section IV for arbitrary 
n,m, and c as an open problem. 

ACKNOWLEDGMENT 

The authors wish to thank the referees (particularly, Referee 
B) and Prof, R. Cruz for their invaluable comments on the 
original version of the paper. 

REFERENCES 

Fig. 5. Illustration of the sparse crossbar construction in Theorem 7 for 
n = 12,m = 10, and c = 3. 

blocked by as many as c - 1 inputs in 11, demostrating the 
necessity of c crosspoints per each input in 12. This particular 
construction uses 12 - 3 + 9 = 18 crosspoints, whereas the 
lower bound yields 

[(n - c + l)m/(m - c + 1)1 = [lo x lO/Sl = 13 

crosspoints. 

V. CONCLUDING REMARKS 

The three main results of this paper are 1) the construction 
of a full-capacity sparse crossbar concentrator with a minimum 
number of crosspoints for any number inputs and any number 
of outputs, 2) a new, easily computable lower bound on the 
crosspoint complexities of bounded-capacity sparse crossbar 
concentrators, and 3) the construction of a bounded-capacity 
sparse crossbar concentrator with crosspoint complexity which 
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